Endurance Seminar, Hypoxia Training Pajulahti November 2021

Altitude training before competition -

Martin Burtscher: University Innsbruck, Austria

Start: OLYMPICS IN MEXICO CITY 1968

Performance decline! Health Risk for Athletes?

~ 2240 m

Mexico City 1968 Munich 1972 2300 m 520 m

	100m	10.000m	Marathon
1968	9.9	29:27.4	2:20:26
1972	10.14	27:38.4	2:12:19

Performance changes: Why? No health risk!

HYPOXIA (ALTITUDE) EFFECTS Continuous Exposure

TOP OF SALZBURG

Cardio-respiratory stress

Exercise (in)tolerance

Hyperventilation Hemoconcentration

Adaptations

Erythropoiesis

VO₂max decline with increasing altitude

VO_2 max decline related to changes in SaO₂

Cardiac output x Hemoglobin x SaO₂

Treml et al., 2020

Physiological responses to high-altitude exposure

Hyperventilation Alveolar and arterial pO_2 and SaO_2 improve Alveolar and arterial pCO_2 decrease

Alkalosis + diuresis (bicarbonate loss)

SaO₂ decline differs depending on conditions

Acute HYPOXIA

Plasma Volume decreases

Stroke volume decreases \rightarrow Heart rate increases Hemoconcentration \rightarrow Hb increases

Net effects of HYPOXIA on VO₂ (submax)

Initially decreased!

$VO_2 = HR \times SV \times Hb \times 1.34 \times (SaO_2 - SvO_2)$

After several days partly improved(!) due to **Hyperventilation** and **Hemoconcentration**

→ Erythropoiesis contributes after about 2 weeks!

Net effects of Hypoxia on VO₂ (maximal)

Initially decreased!

$VO_2 = HR \times SV \times Hb \times 1.34 \times (SaO_2 - SvO_2)$

Remains decreased (!)

as HRmax() cannot compensate for the decrease in SV Additionally: unfavorable blood redistribution may occur

Training and Living in Hypoxia/at Altitud

Increase of arterial oxygen content (Hb x SaO₂) → may improve SL performance but: Reduced skeletal muscle stimulus!

Live High and Train Low (intensive) to improve Sea Level Performance

Performance Increase for Altitude or Sea level Competition?

LHTH (1968) LHTL (1990+) LLTH LHTLH HT IHHT

HYPOXIA Models

For High-Altitude Competion: → Preparation at the Competition Altitude

- Higher altitudes need longer acclimatization periods!
- No large differences between HH and NH
- Individually different responses!

Responses to Maximale Exercise during a 22-day Exposure to High Altitude (4300 m)

according to Horstman et al. 1980

Tenzing Hillary Everest Marathon

For competitions at (high) altitude you need: at least 1-2 (3) weeks of prior LHTH (at the altitude of the competition!)

<u>if not possible</u>: you can use IHT (2-3 weeks) + short term arrival (2-10 h) before competition.

Does Hemoglobin Mass increase with Hypoxia/High Altitude Exposure?

Hauser et al., JAP 2017

Hauser et al., JAP 2017

Time-dependent Adaptations to Hypoxia/Altitude Exposure

Vienna City Marathon

For competitions near Sea Level you need: at least 300 hours of prior LHTL(H) (altitude: 2,100 – 2,700 m, real or simulated) intensive training sessions at low altitude

<u>Consider</u>: progressive increase in altitude pilot trials! Iron -supplementation

Iron – Supplementation

 \rightarrow

 \rightarrow

before and during the high-altitude training (HT); 1 Dosis/d

Ferritin

>130 ng/mL

< 100 ng/mL

100 – 130 ng/mL →

100 mg 2 wks beforer HT 200 mg 1 wk before HT 200 mg during the HT 100 mg 2 wks before and during the HT maybe < 50 mg/d

<u>Intake</u>: 4-6 h after and > 2h before intensive training <u>Cave</u>: Interactions: Calcium, black tea, coffee, red wine, VitE, may negatively affect iron resporption

Stellingwerff et al., 2019

Hypobaric

Normobaric HYPOXIA

Hypoxia-related molecular responses: HIF-mediated

Hypoxia preconditioning effects via ROS signaling: Prior hypoxia (stress) exposure protects from later more severe hypoxia (+other stress)!

Schematic summarizing factors most influential in determining the balance of beneficial vs. pathogenic intermittent hypoxia (IH) effects.

Angela Navarrete-Opazo, and Gordon S. Mitchell Am J Physiol Regul Integr Comp Physiol 2014;307:R1181-R1197

Altitude Conditioning Apparatus, 1987

Intermittent Exposures

Acclimatization near home? Ricart et al., 2000

Ν

Ν

н

9 participants were exposedto simulated altitude of 5000 m (HH)2 hours/day for 14 days (28 hours)

During submaximal exercise SaO_2 rose from 65 to 71% VE rose from 55.5 to 67.6 L/min

Intermittent hypoxia (at rest) may improve exercise tolerance, exercise performance, and running economy

Patients, healthy individuals, athletes? Protocol?

e.g., 3/3 or 5/5 cycles – hypoxia (16-10%)/normoxia 60 min/d, 5 d/wk, 3 weeks

Acutely intermittent hypoxia produced substantial enhancement in endurance performance in male competitive cyclists and triathletes, but the relative benefit of 3- vs 5-min exposure intervals remains unclear.

Bonetti et al., 2009

Training in normobaric hypoxia and its effects on acute mountain sickness after rapid ascent to 4559 m Schommer et al., 2010

40 participants exercised 70 min, 3 x /week for 3 weeks at 60% VO₂max in N or NH (2500, 3000, and **3500** m during 3 weeks) + 4 passive exposures of 90 min N or NH in week 4 Total exposure time: <u>16.5 hours</u> 5 days later ascent to **4559 m**

AMS at 3611 m: 6% (NH) vs. 47% (N), p = 0.01) No significant difference at 4559 m

HVR changes post IH

7 x 1h (7 h) 4500 m, post = 2d

Wille et al., SJMSS 2012

Anaerobic Power after IHT

Meeuwsen et al. 2001

IHT (FiO₂ 15.5 %, 2,500 m; 2 times per week over 4 weeks; competition mesocycle) in swimmers

Improved swimming performance was associated with improved anaerobic capacity!

Czuba et al., 2017

Interval training in hypoxia vs. normoxia in male middle and long distance runners: 526 mmHg; simulated altitude of 3000 m

Jung et al., 2020

Improved VO_2 max, hemodynamic and ANS function, but improvement of 3 km TT were the same! Immune function was not adversely affected by IHT. So, what are the benefits of IHT?

Jung et al., 2020

LLTH: 3,850m, 33 (untrained) men, low and high intensity; 30 min/d, 5 d/wk, 6 weeks

Morphological measurements in M. vastus lateralis. Comparisons after 6 weeks of training							
Group		N-high	N-low	H-high	H-low		
Increase of knee extensor volume (%)		1.36 ± 0.74	3.24 ± 1.65	4.96 ± 1.01*	1.09 ± 1.03		
Volume density of total mitochondria (%)	before training	6.01 ± 0.48	5.53 ± 0.39	5.25 ± 0.38	5.22 ± 0.45		
	after training	<mark>7.45 ± 0.39*§</mark>	6.16 ± 0.59	8.11 ± 0.53*§&	6.55 ± 0.45*&		
Volume density of subsarcolemmal mitochondria (%)	before training	1.42 ± 0.25	1.01 ± 0.16	1.00 ± 0.17	0.80 ± 0.22		
	after training	1.61 ± 0.24	0.88 ± 0.18	2.05 ± 0.37*&	1.54 ± 0.35&		
Capillary length density (mm ⁻²)	before training	762 ± 35	729 ± 31	735 ± 44	644 ± 42		
	after training	760 ± 37	655 ± 52	821 ± 35*&	658 ± 23&		
Mean values \pm SE. N stands for normoxic conditions. H for hypoxia. Volume density of mitochondria is volume/fiber volume in %. Total mitochondria are the sum of central and subsarcolemmal mitochondria. Symbols as in Table [3]							

Geiser et al., IJSM 2001

Effects of RT in Hypoxia

Kon et al., PhysiolRep 2014

Running economy after 2 x 5 wks of IHrest

Running economy after 2 x 5 wks of IHrest

Similar findings after IHrest were observed in Basketball players by Kilding et al., 2016

Running Economy after 10 days Training at ~1800 m

Diebel et al., 2017

(Repated) Sprint Training in Hypoxia

Delta [tHb]

pre and post sprint training in hypoxia (RSH) in normoxia (RSN)

Improved blood perfusion

Faiss et al., Plos One 2013

Suggested Upregulation/Increase after Sprint Training in Hypoxia

Mitochondrial density Capillary-to-fibre ratio Fibre cross-sectional area

Oxidative stress defence pH regulation NO-dependent vasodilation

- \rightarrow benefits of FT-fibres
- \rightarrow higher microvascular PO₂
 - → reduced PCr breakdown, faster PCr recovery

Faiss et al., BJSM 2013

2000-3000 m may be more effective than higher altitudes! Goods et al., 2014

Altitude training before competition models and use of intermittent hypoxia Why?

What do you expect (based on scientific evidence)? Appropriate (available) hypoxia methode? Potential disadvantages? Pilot testing (individual responses)? Accompanying measures e.g., diet)?

.

