Application of Critical Power in Endurance Sports

Ida Kyrilis (Clark), PhD, CSCS

B.S: Exercise Science
M.S: Exercise Physiologi

PhD: Exercise Physiology

Bosön

What is CP/CS and W^{\prime} / D^{\prime} ?

- CP: Critical Power separates power outputs for which exercise tolerance can be sustained for long periods of time (>30min) from those that are predictably limited.
- W': Fixed amount of work that can be done above CP. Therefore, tolerance for exercise performed above CP is limited by the power output sustained above CP and the size of W^{\prime}.

How to estimate CS/CP

- Conventional Method
- 3-min all-out test

Conventional Method

- Performance best times
- Perferible 2-12min in length

3-min all-out test

Fig. 1 GPS tracking of a 3-min all-out running test for a representative subject.

Performance best calculations ($\sim 2-30 \mathrm{~min}$)

Running

CS = average velocity of the last 30s
$D^{\prime}=150 \mathrm{~s}\left(V_{150 \mathrm{~s}}-C S\right)$, where $V_{150 \mathrm{~s}}$ is the average velocity for the initial 150 s
$\mathrm{t}_{\mathrm{LIM}}=\left(\mathrm{D}-\mathrm{D}^{\prime}\right) / \mathrm{CS}$
$V=\left(D^{\prime} / t_{\text {LIM }}\right)+C S$

Biking

CP (W)= average Power (W) of the last 30s
$W^{\prime}(J)=150 \mathrm{~s}\left(\mathrm{P}_{150 \mathrm{~s}}-C P\right)$, where $P_{150 \mathrm{~s}}$ is the average Power for the initial 150 s
$\mathrm{t}_{\mathrm{LIM}}=W^{\prime} /(\mathrm{P}-\mathrm{CP})$

$P=\left(W^{\prime} / t_{L I M}\right)+C P$

At what speeds can we run long distances?

- We normally exercise around 85\% of CS depending on how fit we are.
- 2017 a study looked at 12 elite marathon runners' and concluded that the athletes were running marathon distances at a submaximal speed around 96% (93-100\%) of their CS. Jones AM, Vannatale A (2017). The "Critical Power" Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise. Sport Med 47(s1): 65-78.

Interval calculations

Intervals
$\mathrm{V}=\left[\left(D^{\prime} \times \%\right) / \mathrm{t}_{\mathrm{LIM}}\right]+C S$,
$I N T_{t}=\left[D-\left(D^{\prime} \times \%\right)\right] / C S$, and
$I N T_{t}=\left(D^{\prime} \times \%\right) /(V-C S)$,
where V is velocity, INT_{t} is interval time, D is distance, and $\mathrm{t}_{\mathrm{LIM}}$ is time to completion (note: \% is the fraction of the amount depleted of D^{\prime} each interval).

4 reps $=60 \%$ depletion of D^{\prime}, rest $1: 1$
3 reps $=80 \%$ depletion of D^{\prime}, rest $1: 1.5$

What happens to CP and W^{\prime} after 2 h of exercise in the heavy intensity domain?

The effects of carbohydrate feeding during exercise

- $60 \mathrm{~g} / \mathrm{h}(15 \mathrm{~g} / 15 \mathrm{~min})$

What happens to CP and W^{\prime} after 40 and 80 min of exercise in the heavy intensity domain?

